Genetic determinants on rat chromosome 6 modulate variation in the hypercapnic ventilatory response using consomic strains.

نویسندگان

  • M R Dwinell
  • H V Forster
  • J Petersen
  • A Rider
  • M P Kunert
  • A W Cowley
  • H J Jacob
چکیده

To understand the genetic basis of pathways involved in the control of breathing, a large scale, high-throughput study using chromosomal substitution strains of rats is underway. Eight new consomic rat stains (SS-2(BN), SS-4(BN), SS-6(BN), SS-7(BN), SS-8(BN), SS-11(BN), SS-12(BN), SS-14(BN), SS-Y(BN)), containing one homozygous BN/NHsdMcwi (BN) chromosome on a background of SS/JrHsdMcwi (SS), were created by PhysGen (http://pga.mcw.edu) Program for Genomic Applications. Male and female rats were studied using standard plethysmography under control conditions and during acute hypoxia (inspired oxygen fraction = 0.12) and hypercapnia (inspired CO(2) fraction = 0.07). The rats were also studied during treadmill exercise. Both male and female BN rats had a significantly lower ventilatory response during 7% CO(2) compared with SS rats of the same gender. SS-6(BN) female rats had a significantly reduced ventilatory response, similar to BN rats due primarily to a reduced tidal volume. Male SS-6(BN) rats had a significantly reduced tidal volume response to hypercapnia but a slightly increased frequency response during hypercapnia. Gene(s) on the Y chromosome may play a role in this increased frequency response in the male rats because the SS-Y(BN) hypercapnic ventilatory response involves a significantly increased frequency response. Several chromosomal substitutions slightly altered the ventilatory responses to hypoxia and exercise. However, genes on chromosomes 6 and Y of those studied are of primary importance in aspects of ventilatory control currently studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Y-chromosome transfer induces changes in blood pressure and blood lipids in SHR.

Previous studies with chromosome-Y consomic strains of spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats suggest that a quantitative trait locus for blood pressure regulation exists on chromosome Y. To test this hypothesis in the SHR-Brown Norway (BN) model and to study the effects of chromosome Y on lipid and carbohydrate metabolism, we produced a new consomic strain of SHR carrying ...

متن کامل

Consomic strategies to localize genomic regions related to vascular reactivity in the Dahl salt-sensitive rat.

Chromosomal substitution strains afford the opportunity to discover regions of the rat genome that contain genes related to cardiovascular traits with the long-range goal of linking these genes to physiological function. PhysGen (Programs for Genomic Applications) created a consomic panel of rats derived from the introgression of a single chromosome (> or =95% of the BN chromosome, one at a tim...

متن کامل

Dynamic convergence and divergence of renal genomic and biological pathways in protection from Dahl salt-sensitive hypertension.

Chromosome 13 consomic and congenic rat strains were analyzed to investigate the pattern of genomic pathway utilization involved in protection against salt-sensitive hypertension and renal injury. Introgression of the entire Brown-Norway chromosome 13 (consomic SS-13(BN)) or nonoverlapping segments of this chromosome (congenic strains, 16 Mbp in D13Rat151-D13Rat197 or 14 Mbp in D13Rat111-D13Got...

متن کامل

Interactions in hypoxic and hypercapnic breathing are genetically linked to mouse chromosomes

Tankersley, Clarke G., and Karl W. Broman. Interactions in hypoxic and hypercapnic breathing are genetically linked to mouse chromosomes 1 and 5. J Appl Physiol 97: 77–84, 2004. First published February 20, 2004; 10.1152/japplphysiol.01102.2003.—The genetic basis for differences in the regulation of breathing is certainly multigenic. The present paper builds on a well-established genetic model ...

متن کامل

Body Composition QTLs Identified in Intercross Populations Are Reproducible in Consomic Mouse Strains

Genetic variation contributes to individual differences in obesity, but defining the exact relationships between naturally occurring genotypes and their effects on fatness remains elusive. As a step toward positional cloning of previously identified body composition quantitative trait loci (QTLs) from F2 crosses of mice from the C57BL/6ByJ and 129P3/J inbred strains, we sought to recapture them...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 98 5  شماره 

صفحات  -

تاریخ انتشار 2005